真人一对一直播,chinese极品人妻videos,青草社区,亚洲影院丰满少妇中文字幕无码

0
首頁(yè) 精品范文 初三數(shù)學(xué)教案

初三數(shù)學(xué)教案

時(shí)間:2022-12-21 07:09:57

開(kāi)篇:寫作不僅是一種記錄,更是一種創(chuàng)造,它讓我們能夠捕捉那些稍縱即逝的靈感,將它們永久地定格在紙上。下面是小編精心整理的12篇初三數(shù)學(xué)教案,希望這些內(nèi)容能成為您創(chuàng)作過(guò)程中的良師益友,陪伴您不斷探索和進(jìn)步。

第1篇

(一)知識(shí)教學(xué)點(diǎn):認(rèn)識(shí)形如x2=a(a≥0)或(ax+b)2=c(a≠0,c≥0,a,b,c為常數(shù))類型的方程,并會(huì)用直接開(kāi)平方法解.

(二)能力訓(xùn)練點(diǎn):培養(yǎng)學(xué)生準(zhǔn)確而簡(jiǎn)潔的計(jì)算能力及抽象概括能力.

(三)德育滲透點(diǎn):通過(guò)兩邊同時(shí)開(kāi)平方,將2次方程轉(zhuǎn)化為一次方程,向?qū)W生滲透數(shù)學(xué)新知識(shí)的學(xué)習(xí)往往由未知(新知識(shí))向已知(舊知識(shí))轉(zhuǎn)化,這是研究數(shù)學(xué)問(wèn)題常用的方法,化未知為已知.

二、教學(xué)重點(diǎn)、難點(diǎn)

1.教學(xué)重點(diǎn):用直接開(kāi)平方法解一元二次方程.

2.教學(xué)難點(diǎn):(1)認(rèn)清具有(ax+b)2=c(a≠0,c≥0,a,b,c為常數(shù))這樣結(jié)構(gòu)特點(diǎn)的一元二次方程適用于直接開(kāi)平方法.(2)一元二次方程可能有兩個(gè)不相等的實(shí)數(shù)解,也可能有兩個(gè)相等的實(shí)數(shù)解,也可能無(wú)實(shí)數(shù)解.如:(ax+b)2=c(a≠0,a,b,c常數(shù)),當(dāng)c>0時(shí),有兩個(gè)不等的實(shí)數(shù)解,c=0時(shí),有兩個(gè)相等的實(shí)數(shù)解,c<0時(shí)無(wú)實(shí)數(shù)解.

三、教學(xué)步驟

(一)明確目標(biāo)

在初二代數(shù)“數(shù)的開(kāi)方”這一章中,學(xué)習(xí)了平方根和開(kāi)平方運(yùn)算.“如果x2=a(a≠0),那么x就叫做a的平方根.”“求一個(gè)數(shù)平方根的運(yùn)算叫做開(kāi)平方運(yùn)算”.正確理解這個(gè)概念,在本節(jié)課我們就可得到最簡(jiǎn)單的一元二次方程x2=a的解法,在此基礎(chǔ)上,就可以解符合形如(ax+b)2=c(a,b,c常數(shù),a≠0,c≥0)結(jié)構(gòu)特點(diǎn)的一元二次方程,從而達(dá)到本節(jié)課的目的.

(二)整體感知

通過(guò)本節(jié)課的學(xué)習(xí),使學(xué)生充分認(rèn)識(shí)到:數(shù)學(xué)的新知識(shí)是建立在舊知識(shí)的基礎(chǔ)上,化未知為已知是研究數(shù)學(xué)問(wèn)題的一種方法,本節(jié)課引進(jìn)的直接開(kāi)平方法是建立在初二代數(shù)中平方根及開(kāi)平方運(yùn)算的基礎(chǔ)上,可以說(shuō)平方根的概念對(duì)初二代數(shù)和初三代數(shù)起到了承上啟下的作用.而直接開(kāi)平方法又為一元二次方程的其他解法打下堅(jiān)實(shí)的基礎(chǔ),此法可以說(shuō)起到一個(gè)拋磚引玉的作用.學(xué)生通過(guò)本節(jié)課的學(xué)習(xí)應(yīng)深刻領(lǐng)會(huì)數(shù)學(xué)以舊引新的思維方法,在已學(xué)知識(shí)的基礎(chǔ)上開(kāi)發(fā)學(xué)生的創(chuàng)新意識(shí).

(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)及目標(biāo)完成過(guò)程

1.復(fù)習(xí)提問(wèn)

(1)什么叫整式方程?舉兩例,一元一次方程及一元二次方程的異同?

(2)平方根的概念及開(kāi)平方運(yùn)算?

2.引例:解方程x2-4=0.

解:移項(xiàng),得x2=4.

兩邊開(kāi)平方,得x=±2.

x1=2,x2=-2.

分析x2=4,一個(gè)數(shù)x的平方等于4,這個(gè)數(shù)x叫做4的平方根(或二次方根);據(jù)平方根的性質(zhì),一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù);所以這個(gè)數(shù)x為±2.求一個(gè)數(shù)平方根的運(yùn)算叫做開(kāi)平方.由此引出上例解一元二次方程的方法叫做直接開(kāi)平方法.使學(xué)生體會(huì)到直接開(kāi)平方法的實(shí)質(zhì)是求一個(gè)數(shù)平方根的運(yùn)算.

練習(xí):教材P.8中1(1)(2)(3)(6).學(xué)生在練習(xí)、板演過(guò)程中充分體會(huì)直接開(kāi)平方法的步驟以及蘊(yùn)含著關(guān)于平方根的一些概念.

3.例1解方程9x2-16=0.

解:移項(xiàng),得:9x2=16,

此例題是在引例的基礎(chǔ)上將二次項(xiàng)系數(shù)由1變?yōu)?,由此增加將二次項(xiàng)系數(shù)變?yōu)?的步驟.此題解法教師板書,學(xué)生回答,再次強(qiáng)化解題

負(fù)根.

練習(xí):教材P.8中1(4)(5)(7)(8).

例2解方程(x+3)2=2.

分析:把x+3看成一個(gè)整體y.

例2把引例中的x變?yōu)閤+3,反之就應(yīng)把例2中的x+3看成一個(gè)整體,

兩邊同時(shí)開(kāi)平方,將二次方程轉(zhuǎn)化為兩個(gè)一次方程,便求得方程的兩個(gè)解.可以說(shuō):利用平方根的概念,通過(guò)兩邊開(kāi)平方,達(dá)到降次的目的,化未知為已知,體現(xiàn)一種轉(zhuǎn)化的思想.

練習(xí):教材P.8中2,此組練習(xí)更重要的是體會(huì)方程的左邊不是未知數(shù)的平方,而是含有未知數(shù)的代數(shù)式的平方,而右邊是個(gè)非負(fù)實(shí)數(shù),采用直接開(kāi)平方法便可以求解.

例3解方程(2-x)2-81=0.

解法(一)

移項(xiàng),得:(2-x)2=81.

兩邊開(kāi)平方,得:2-x=±9

2-x=9或2-x=-9.

x1=-7,x2=11.

解法(二)

(2-x)2=(x-2)2,

原方程可變形,得(x-2)2=81.

兩邊開(kāi)平方,得x-2=±9.

x-2=9或x-2=-9.

x1=11,x2=-7.

比較兩種方法,方法(二)較簡(jiǎn)單,不易出錯(cuò).在解方程的過(guò)程中,要注意方程的結(jié)構(gòu)特點(diǎn),進(jìn)行靈活適當(dāng)?shù)淖儞Q,擇其簡(jiǎn)捷的方法,達(dá)到又快又準(zhǔn)地求出方程解的目的.

練習(xí):解下列方程:

(1)(1-x)2-18=0;(2)(2-x)2=4;

在實(shí)數(shù)范圍內(nèi)解一元二次方程,要求出滿足這個(gè)方程的所有實(shí)數(shù)根,提醒學(xué)生注意不要丟掉負(fù)根,例x2+36=0,由于適合這個(gè)方程的實(shí)數(shù)x不存在,因?yàn)樨?fù)數(shù)沒(méi)有平方根,所以原方程無(wú)實(shí)數(shù)根.-x2=0,適合這個(gè)方程的根有兩個(gè),都是零.由此滲透方程根的存在情況.以上在教師恰當(dāng)語(yǔ)言的引導(dǎo)下,由學(xué)生得出結(jié)論,培養(yǎng)學(xué)生善于思考的習(xí)慣和探索問(wèn)題的精神.

那么具有怎樣結(jié)構(gòu)特點(diǎn)的一元二次方程用直接開(kāi)平方法來(lái)解比較簡(jiǎn)單呢?啟發(fā)引導(dǎo)學(xué)生,抽象概括出方程的結(jié)構(gòu):(ax+b)2=c(a,b,c為常數(shù),a≠0,c≥0),即方程的一邊是含有未知數(shù)的一次式的平方,另一邊是非負(fù)實(shí)數(shù).

(四)總結(jié)、擴(kuò)展

引導(dǎo)學(xué)生進(jìn)行本節(jié)課的小節(jié).

1.如果一元二次方程的一邊是含有未知數(shù)的一次式的平方,另一邊是一個(gè)非負(fù)常數(shù),便可用直接開(kāi)平方法來(lái)解.如(ax+b)2=c(a,b,c為常數(shù),a≠0,c≥0).

2.平方根的概念為直接開(kāi)平方法的引入奠定了基礎(chǔ),同時(shí)直接開(kāi)平方法也為其它一元二次方程的解法起了一個(gè)拋磚引玉的作用.兩邊開(kāi)平方實(shí)際上是實(shí)現(xiàn)方程由2次轉(zhuǎn)化為一次,實(shí)現(xiàn)了由未知向已知的轉(zhuǎn)化.由高次向低次的轉(zhuǎn)化,是高次方程解法的一種根本途徑.

3.一元二次方程可能有兩個(gè)不同的實(shí)數(shù)解,也可能有兩個(gè)相同的實(shí)數(shù)解,也可能無(wú)實(shí)數(shù)解.

四、布置作業(yè)

1.教材P.15中A1、2、

2、P10練習(xí)1、2;

P.16中B1、(學(xué)有余力的學(xué)生做).

五、板書設(shè)計(jì)

12.1用公式解一元二次方程(二)

引例:解方程x2-4=0例1解方程9x2-16=0

解:…………

……例2解方程(x+3)2=2

此種解一元二次方程的方法稱為直接開(kāi)平方法

形如(ax+b)2=c(a,b,

c為常數(shù),a≠0,c≥0)可用直接開(kāi)平方法

六、部分習(xí)題參考答案

教材P.15A1

以上(5)改為(3)(6)改為(4),去掉(7)(8)

主站蜘蛛池模板: 新田县| 于都县| 天镇县| 平武县| 天柱县| 车致| 萝北县| 庐江县| 钦州市| 元朗区| 五莲县| 弋阳县| 安顺市| 贺州市| 白水县| 清镇市| 益阳市| 新龙县| 松阳县| 永泰县| 辽阳市| 固阳县| 红桥区| 定州市| 曲水县| 雷山县| 灌南县| 徐汇区| 体育| 日喀则市| 荔浦县| 宣恩县| 济南市| 海原县| 武隆县| 昆山市| 舟曲县| 咸丰县| 孝义市| 鲁甸县| 上栗县|