時間:2023-05-29 17:38:00
開篇:寫作不僅是一種記錄,更是一種創造,它讓我們能夠捕捉那些稍縱即逝的靈感,將它們永久地定格在紙上。下面是小編精心整理的12篇角平分線的性質課件,希望這些內容能成為您創作過程中的良師益友,陪伴您不斷探索和進步。
一、樹立"數與形"的觀念
教授在談數學時曾經說過"學數學學通了一定要把數和形都打通了。"數學是以現實世界的空間形式和數量關系作為自己特定的研究對象。也就是說,數學是研究"數"與"形"及其相互關系的一門科學。數形結合的思想是數學的重要思想之一。而學生在學習數學特別是幾何中最大的困難就在于不能很好地把數和形聯系起來,缺乏良好的空間想像能力,所以這嚴謹的數學體系對不少學生來說都不好學,數學成了許多學生的沉重負擔。能否找到一條路,既減輕了學生的負擔,又能激發他們的學習興趣,還能通過幾何課進行良好的思維訓練呢?
二、《幾何畫板》特點
《幾何畫板》軟件是由美國Key Currioulum Press公司制作并出版的幾何軟件。它的全名是《幾何畫板——21世紀的動態幾何》。它是一個適用于幾何(平面幾何、解析幾何、射影幾何等〉教學的軟件平臺,為老師和學生提供了一個探索幾何圖形內在關系的環境。初次接觸《幾何畫板》是在朋友的電腦課上,偶爾打開桌面上一個幾何圖形,便進入了幾何畫板的天地。初遇幾何畫板,覺得它很"簡陋",沒有多少吸引人的地方。可隨著我對《幾何畫板》的逐步了解以及在自己制作課件和教學過程中,我便被它的魅力所折服。
(一)簡明樸素。目前有許多好的制作工具軟件,但當你使用它們的時候,特別是初學者,會發現界面十分復雜,到處都是工具欄。不小心按下一個鍵都有可能跳出一個菜單或對話而且有些還需要程序語言,往往很難掌握,并且制作過程與學科本身知識相差很遠,只是一種對某一問題的模擬再現。《幾何畫板》相比較而言,界面清爽,僅一塊白板而已。制作工具一清二楚,操作不需要任何程序語言,只是以數學基礎為根本,利用學科知識本身來解決問題。運用《幾何畫板》真的是利用有限的工具實現無限的組合和變化,表現出我們所需要反映的問題,更符合學科本身的要求。
(二)短小精悍。在上公開課、匯報課時,我用Authorware做了一個課件,整整花了我一個星期的時間 但制作還是不到位,交互效果不好。特別是這個課件由于加入了音樂和圖片,整整有幾十兆,軟盤根本就裝不下,結果只能用刻錄機把它刻錄成光盤,真是很不方便。但用《幾何畫板》情況則不同,用它制作課件時,投入人力少,只要一個教師花十幾分鐘,最多一、二個小時就能制作出一個好的課件,甚至可以邊教學邊做,并且整個課件不過幾KB,《幾何畫板》本身壓縮后也只有幾十KB,用小U盤便可以解決問題,也便使得《幾何畫板》 課件便于攜帶和交流。
(三)動態性強。《幾何畫板》最大的特點就是動態性。在我們運用Authorware或Flash等一些軟件時,用鼠標拖動圖形上任一元素(點、線、圓),都有可能改變整個圖形,使原來給定的幾何關系(即圖形的基本性質)變得面目全非。而《幾何畫板》則不然,拖動圖形上的任一元素,而事先給定的所有幾何關系都保持不變,這樣我們就可以在圖形的變化中把握不變,深入幾何的精髓,突破傳統教學的難點。并且利用《幾何畫板》的這一特點,教師可以讓學生自己操作,從而在觀察、探索、發現的過程中,加深理解。
三、《幾何畫板》在幾何證明中的應用
(一)角平分線性質定理。這個定理是在學習了全等三角形以后給出的,教師在上課過程中,一般都是利用三角形全等的知識來證明"角平分線上的點到兩邊的距離相等"。相比較而言,這個定理比較容易證明。首先作出角平分線上的點到兩邊的距離,然后證明所連成的兩個三角形全等,從而來證明角平分線的性質定理。我們可以通過《幾何畫板》用一種比較直觀、形象的方法來解決問題。利用《幾何畫板》先畫出∠ABC及角平分線,在角平分線上取一點D,對D進行軌跡跟蹤。通過對D點的運動,可以發現D點到兩邊的距離的數值在不斷地變化,但無論怎樣變,兩個距離總是相等的。學生通過課件觀察,很容易就可以得出定理結論。
(二)線段垂直平分線性質定理。這個內容同樣也是在學習了全等三角形以后再給出的。利用三角形全等的知識也很容易得以證明。它也是一個定理,學生理解不透徹,掌握不好。同樣,我們可以利用《幾何畫板》比較直觀地證明"垂直平分線上的點到線段兩端點之間的距離相等"。利用《幾何畫板》先畫一條線段AB及其它的垂直平分線,在垂直平分線上取一點D,對點D進行軌跡跟蹤,通過對點D的運動,點D與兩端點之間的距離DA、DB的數值不斷地變化,但無論怎樣變我們都可以看到兩個距離DA、DB的數值都是相等的。學生很容易便得到掌握定理結論。
【關鍵詞】 幾何畫板;初中數學;學習能力;作用
如何更好地培養初中學生的自主探究學習能力一直都是學校教學的重點,更是學校實行素質教育的首要任務. 本文主要就是以初中數學教學為論述對象. 目前的新課程明確指出對于數學課程的設計或者實施必須要重視信息技術,緊密地與信息技術相互結合,對于計算機的考慮要非常充分,特別是計算機對數學教學的重要影響. 所以,目前學校積極開發向學生提供豐富的學習資源,并且將現代信息技術作為數學教學與實際相結合的工具,該學習軟件主要就是通過改變學生數學的學習方式,幫助學生將全部的精力都放到理論和實際生活相結合當中去,因此,目前的學校都是在積極地將信息技術與課堂教學相互結合. 大部分的學校對積極調動和培養學生的自主探究學習能力已經非常重視了.
一、“幾何畫板”激發學生學習數學的興趣
想要提高學習效果,激發學生的學習興趣是非常重要的,也是學生培養學習能力的重要組成部分. 以前的教學方式,尤其是初中的數學教學是非常枯燥的,主要就是由于教師缺乏對于數學情景的構建,造成數學總是給學生枯燥和抽象的印象. 所以很多學生一想到數學就頭疼,對數學敬而遠之,甚至是感到懼怕和厭惡. 可以說這樣的學習情緒在很大程度上都壓抑了學生的學習潛力. 目前的幾何畫板軟件可以很好地解決這一問題,該軟件有著一定的動態變化的功能,其中涉及的一流交互功能非常有助于學生的理解,能夠以濃縮的形態為學生構建數學情景,加入學生的參與,使得數學枯燥抽象的內容也可以變得相對生動形象,最重要的是可以有助于將以前難懂抽象的概念變得清晰.
二、幾何畫板軟件可以展示知識的形成過程,有助于學生參與知識的探索
目前的幾何畫板軟件不僅可以提供測量和計算的功能,還可以進行度量,比如說初中數學教學內容中涉及線段的長度、弧長、角度和面積等,是可以對測量的結果進行相應的計算的,并且可以很快地將結果顯示在屏幕上,這樣只要用鼠標點擊任意一個對象,發生改變時,相應的幾何對象的量就會發生改變,非常有助于學生發現問題、討論問題. 比如初中數學中涉及的“角平分線”的概念以及性質,就可以讓學生操作幾何畫板,首先構造出∠ABC的平分線BE. 之后就是讓學生量出∠ABE和∠CBE的值. 如果是改變角A的大小,就可以觀察出值的變化,就可以深刻地理解角平分線的概念. 然后作出角兩邊的垂線,量出點E到垂足的距離. 如果學生用鼠標在角平分線上任意拖動點E,也是可以觀察出度量值的變化,發現出角平分線的性質.
在初中的數學教學過程中積極地利用幾何畫板可以有助于讓學生加入數學的教學過程當中,可以很好地實現學生對知識意義的理解,有助于學生更加深刻地理解數學的抽象知識,有效地化解學生對于初中數學知識難點的理解. 例如,在初中的數學中會涉及平行線分線段成比例定理這個知識點,一直以來它對于初中生來講都是個知識上的難點,一般教材都是用平行線等分線段定理進行舉例說明,在理論上是可以說明它的正確性,但是學生不能深刻地理解,很難達到對定理的掌握,如果用幾何畫板軟件做課件,讓學生可以利用電腦自己去度量線段的長,然后計算出線段的比,之后驗證線段的比是不是相等,這樣一來就可以自己探索出“定理”. 這樣的課件可以很好地突出學生學習的主體性和對知識探索觀察的興趣和能力,對于知識可以由一般到特殊、由形象到抽象地逐步掌握,引導學生自己給出證明,這樣很難講清的問題學生自己就解決了.
三、利用幾何畫板的輔助教學,開拓學生的思維
一般情況下,我們說的發散思維是一種不依據常規,尋求變化,從多方面尋求答案的思維方式,可以說是培養學生創造性思維的重點. 一般來講,想要發散思維是必須富于聯想的,必須要有著寬闊的思路,善于分解和想象,采用變通的思維方法. 一般發散思維的三個基本的特征主要就是流暢性、變通性和獨創性. 目前的初中數學教學中對學生思維發散性的訓練可以積極地利用幾何畫板,該軟件有助于我們培養學生的發散思維. 比如說ABC和ADE是兩個等腰直角三角形,點M是EC中點,要求我們求證BMD是等腰三角形. 如果我們利用幾何畫板課件,就可以將等腰直角三角形ADE以A點為中心逆時針方向旋轉,這樣就可以出現系列圖形,可以非常有助于學生輕松得出規律. 讓學生自主探索就可以激發學生的積極思維,有助于學生創造性思維能力的提高.
【參考文獻】
[1]劉學.幾何畫板在數學教學中的應用[J].教育學報,2009.
【關鍵詞】多樣性;信息技術;自學能力
隨著基礎教育課程改革的不斷深入,現代信息技術與數學的聯系將更加密切。現代信息技術與初中數學學科的整合作為深化教育改革的“突破口”,愈來愈受到廣大教師的廣泛關注。其整合的基本原則是多媒體技術的運用要有利于學生認識數學的本質。多媒體輔助教學極大地豐富了課堂教學,使抽象的數學問題具體化、枯燥的數學問題趣味化、靜止的數學問題動態化、復雜的數學問題簡單化,從而激發了學生學習數學的興趣,培養了學生的創新能力。由此可見,為了讓學生更直觀、更全面地獲取知識,充分發揮學生在教學過程中的主體地位,多媒體輔助教學是初中數學教學發展的必然趨勢,是初中數學教學改革的必然結果。下面我根據數學教學中的實踐經驗,談談數學與多媒體有效整合的幾點做法。
一、運用多媒體技術教學能充分發揮學生的主體作用,活躍課堂氣氛,激發學習興趣。
在數學教學中,教師利用多媒體輔助教學可以使靜態的教學內容變為動態的畫面,加上鮮艷的色彩可引起學生的興趣;用直觀的圖形、和諧的聲音可使枯燥而又抽象的數學知識變得生動而又具體,使學生在愉悅的狀態下主動地獲取知識,成為學習的主體,學生才會有充分表達思想和感情的機會。學生有了學習的興趣,才會有學習上的創新。例如在講授“角的平分線的性質”時,我運用幾何畫板將角平分線的性質用動態的方式在計算機上展示出來,先讓學生直觀地觀察到一個角的角平分線所分成的兩個角的度數大小和角平分線上的某一點到兩邊的距離的長度,隨后拖動角的一邊上的動點,讓學生觀察角在改變了大小的同時,其所分成的兩個角的度數大小和角平分線上的某一點到兩邊的距離的長度的變化情況,讓學生在頭腦中形成清晰的印象。這樣吸引了學生的注意力,激發了學生學習數學的興趣。
二、運用多媒體技術提供的外部刺激的多樣性,能促進學生對數學知識的獲取與保持。
信息技術提供的外部刺激是多種感官的綜合刺激,它既能看得見(視覺),又能聽得著(聽覺),還能用手操作(觸覺),這種多樣的刺激,比單一地聽老師講解強得多。同時信息技術的豐富性、交互性、形象性、生動性、可控性、參與性能大大強化這種感官刺激,非常有利于知識的獲取和保持。
1.化抽象為直觀。初中數學的概念教學是教學中的難點,學生幾乎被動地從教師那里接受數學概念,只有靠強化記憶知道概念的共性和本質特征。初中數學中的“函數”教學就是一個典型的概念教學,關鍵是讓學生對“對于x的每一個值,y都有唯一值與它對應”,有一個明晰直觀的印象。我運用多媒體的直觀特性,變化圖像,用聲音、動畫等形式直觀地顯示“對于x的每一個值,y都有唯一值與它對應”,最后播放三峽大壩一期蓄水時的錄相,引導學生把水位設為y,時間設為x,就形成了y與x的函數關系。不僅引起了學生的自豪感,而且使學生對函數概念的理解非常透徹。
2.化繁瑣為簡明。多媒體輔助教學的一個重要出發點是更好地實現教學目標,突破重難點,提高課堂教學效率。培養學生運用信息技術的能力,是信息社會對基礎教育的需要,也是教育面向現代化的需要。
三、運用多媒體技術輔助教學有利于提高學生的自學能力和實踐能力。
多媒體技術輔助初中數學教學,為培養學生自學能力和實踐能力提供了條件,幫助教師根據學生的認知基礎構造問題情境,指導學生學習并給予必要的反饋,總結學習方法,培養學生能力。比如在運用多媒體課件時,把習題編制成一個可交互操作的界面,教學過程中對學生完成正確的則由計算機給予表揚;回答錯誤的,則給出提示或鼓勵,讓學生再繼續思考。又如在教學“二次函數的圖像的性質”時,為了讓學生全面了解二次函數y=ax2+bx+c系數,對其圖像拋物線的影響,我在幾何畫板中任意輸入不同的值,讓學生觀察圖像拋物線的變化,通過大量的演示結果,引導學生自己得出系數的值對二次函數的圖像的影響。整個教學過程改變了過去令許多學生頭疼的、枯燥的理論闡述,改變了過去教師在45分鐘課堂難以操作與完成的局面,讓學生感覺到學習函數的性質既像是在做有趣的理化生實驗,又像是在做游戲,突出了學生的主體地位,激發了學生的熱情,學生的創造力得到了充分的發揮,讓學生從中得到新的發現,體驗到數學發現的快樂。這樣的教學,極大地提高了課堂教學效率,使學生形成了應有的數學思想和方法,其功效是傳統的語言描述與原始的黑板演示不可達到的。
四、運用多媒體技術輔助教學可以增加課堂密度,節約時間。
【關鍵詞】高中數學;課堂效率;知識掌握; 德育教育
以往的數學教育是單純的應試教育,僅憑借一個教師多年的教育經驗,以及其多年來對知識點的總結歸納來給學生灌輸單調的知識。以至于學生覺得知識枯燥無味,對于學習就會感到毫無興趣。現在,國家對學生的教育提出了改革,全面實施減負計劃。這就要求學生要具有良好的課堂學習效率,因此,要求我們一線教師的自身素質要有所提高,我們教師的教學方法要有所改善。
一、活躍課堂氣氛
活躍課堂氣氛,是提高課堂效率的有效方法之一。活躍的課堂氣氛可以大大提高學生上課的積極性,增加學生對數學的學習興趣,集中學生的注意力等。
隨著科技的進步,我們可以利用新的科學技術來活躍課堂氣氛。現代信息技術是科學技術的基礎與核心,因此,可以將信息技術結合到現代數學教學中,即將多媒體教學融入到數學教育中。
教師利用多媒體技術制作各類數學教學課件,為學生提供一個圖文并茂、有聲有色、生動逼真的學習環境。使學生對數學的學習興趣大大提高,并使學生全面、準確、快速的掌握學習中的重點與難點,并引導學生自己去歸納總結所學的知識,達到學以致用、活學活用的目的。進而使學生的課堂學習效率得到大大的提高。
例如,在教學等腰三角形“三線合一”這一內容時,讓學生運用幾何畫板軟件在屏幕上做出斜三角形ABC及其∠A的平分線、BC邊的垂直平分線和中線,然后在屏幕上隨意拖動點A,改變三角形ABC的大小。此時,三角形ABC和“三線”在保持依存關系的前提下隨之變化而變化。在移動的過程中,學生發現了這樣一個直觀的A點的存在,使得角平分線、垂直平分線和中線三線重疊,從而引發學生從實驗結果中去發現等腰三角形的“三線合一”的性質。在教學活動中,學生親自動手操作多媒體觀察、比較、驗證、歸納,見證了數學知識的發現過程,從而使學生很輕松地掌握等腰三角形“三線合一”的性質。
二、加強師生互動
加強師生互動可以更好的使師生融為一體,促進師生之間的相互溝通,使教師能更好的了解學生的掌握情況,使教師能夠及時準確的改善教學側重點。同時,加強師生互動還可以鼓勵學生提出自己的觀點、問題,以此來掌握學生的理解情況,同時還可以促進學生的思考能力,集中學生的注意力,提高學生課堂效率。
加強師生互動可以提高學生的學習興趣,加快學生的理解,促進學生的思考與溝通能力。通過學生自己親身實踐探索的過程,使之能更深刻的掌握所學知識。更好的提高課堂學習效率。師生之間良好熱烈的互動更可以構建教師點撥啟發與學生探索過程相結合的有效課堂。例如,讓學生自己預讀教材,交流討論自身對教材知識的理解,然后教師對學生交流中出現的問題進行糾正,并且結合實際問題加深學生對重點難點的理解。也可以讓學生親手做一些手工之類的課堂實踐,例如在學習圓及圓的性質時。通過讓學生們親身感受知識,使學生對知識的理解更加深入,學習效率大幅提高。
在課堂上,教師與學生可以互動一些課堂實踐,培養學生的實踐能力與創新精神。課堂實踐強調學生的動手能力,通過知識把學生由課堂帶向社會,使學生由個體融入群體之中,使其學會相互溝通,相互幫助,相互合作,實現全面的素質教育,更提高的課堂效率。
三、聯系實際
我們教師要加強教學與實際的聯系,使學生了解所學知識的實際應用,以達到學以致用、活學活用的目標,以此來提高學生的學習興趣。
在課堂教學中,教師可以增加一些實際的問題讓學生思考,同時也可以將時事融入到所教知識中,使學生了解社會的發展。教師用知識聯系社會的實際發展動態,促進學生的思考,使之學后能更好的服務于社會。比如,在學完圓及其一些規律之后,可以結合礦井或者其他行業的實際情況來進行出題以聯系所學知識,這樣不但可以提高學生對知識的理解,也可以增強學生對社會的認識,真正培養自己的興趣所在,將來為社會做出貢獻。
四、將德育教育融入到基礎教學中
關鍵詞:幾何畫板;圖形;直觀;變化
中圖分類號:G632 文獻標識碼:B 文章編號:1002-7661(2015)07-360-01
一、幾何畫板化的直觀性
我們傳統的幾何課堂一般是三角板+圓規+黑板+粉筆,許多知識由于條件限制講不透,只能靠學生自己去“想象”,導致很多學生理解不深刻,容易使學生產生分化現象,對幾何的學習失去信息。現在借助于幾何畫板就完全不一樣了,它能夠準確的、動態的表現幾何問題,讓學生在直觀演示中體會幾何的奧秘。例如在教授三角形的三條線即中線、角平分線、高是否交于同一點這個問題時,在傳統的教學中只能靠教師精確的畫圖,有一點誤差的話,結果就出不來了。如果利用幾何畫板就不同了,我們可以先在畫板上任取三個點,然后用線段把它們連起來組成一個三角形。這時,我們任意拉動其中的一個點,雖然圖形的大小、位置會發生變化,但形狀一定還是三角形。接著在幾何畫板中我們分別構造出三角形的三條中線、三條高、三條角平分線,先讓學生觀察是否交于一點?結果是肯定的。這時再拉動其中任一點時,三角形的形狀同樣會發生變化,但三條中線、高、角平分線還是仍然交于一點的。這樣我們就可以在圖形的變化中觀察到不變的 規律,加深學生對這一性質的理解。再比如利用幾何畫板軟件畫任意一個四邊形,量出它的各內角的度數并計算它們的和,隨后拖動頂點改變所畫四邊形的形狀,這時學生會觀察得到各角的度 數雖然發生了變化,但是其內角和始終等于360度,從而很自然地得出“四邊形內角和等于360度”這一結論。
二、幾何畫板的動態性
傳統的幾何教學學生理解不了,關鍵在于其圖形的抽象性。學生對于由圖形轉化成幾何語言困難重重,往往是亂寫一氣。在傳統的教學模式下,教師通常是利用三角板、直尺、圓規等工具用粉筆在黑板上作出很多有關教學內容的具有代表性的圖形,并結合學生生活的具體實際,這樣的圖形是死板的,許多學生由于跟不上教師的步伐,所以導致成績直線后退。但利用幾何畫板來輔助教學,可以使“出示得圖形更靈活,展現的圖形更豐富,而且具有規范、直觀”等諸多好處。例如在講授軸對稱圖形和中心對稱圖形這一課題時,雖然通過觀察現實生活中的典型圖片,學生對軸對稱圖形和中心對稱圖形的概念非常熟悉,可是真正判斷的話還是有一定的困難。因為學生很難想象這個圖形翻折后或者旋轉180度之后是什么情況,于是我們教師便會命令學生把一些常見圖形是不是軸對稱圖形或者是不是中心對稱圖形背過,但這樣的做法肯定是不符合課程要求的。這是如果我們利用幾何畫板,把一個圖形是怎樣沿著某一條直線翻折過來,然后直線兩旁的部分是怎樣重合或不重合這個動態的過程展示給學生,學生就會對徹底的理解這些圖形所具備的特點。當然在講授旋轉、平移時也借助于幾何畫板演示其動態過程幫助學生理解掌握。
三、幾何畫板幫助理解動點問題 .[來源:學科網]
現在的中考中壓軸題和難題往往就是 幾何的動點問題,這些題目僅僅靠題目中出現的單一圖形并不能得到正確的答案,主要考查學生對圖形的直覺能力以及從變化中看到不變實質的數學洞察力。動點問題一直是數學求函 數值、最值問題時學生較難解決的一類題目。學生面對圖形,往往想到的只是圖形里面所畫的固定點,想不到還有別的情況,體 現不出動點的動性。幾何畫板的主要優勢就是能夠使靜態變為動態,抽象變為形象,利于抽象思維能力的培養。特別是研究二次函數的圖像性質時,以往主要靠系數取個別數值后畫出相應的拋物線,利用個別案例來說明拋物線開口大小、開口方向等的制約條件來向學生展示。學生這時對于圖像的認識很有可能是靠死記硬背,他們沒有真正的體會系數對于二次函數圖像所起的作用。而我們也不可能把所有系數可取的值一一向學生展示圖像。現在可以利用“幾何畫板”提供的條件,對二次函數的系數任意賦予不同的數值甚至可使系數連續變化來觀察圖形所引起的變化,讓學生充分理解二次函數的圖像性質。
四、運用幾何畫板做“數學實驗”
一想到數學實驗人 們往往浮現的一批復雜的工具,一套繁瑣的程序。但現在幾何畫板就可以為做“數學實驗”提供理想環境,變復雜為簡單,用幾何畫板幾分鐘就能實現動畫效果。例如利用幾何畫板可以動態測 量線段的長度和角 的大小, 還可以通過拖動鼠標可輕而易舉地改變圖形的形狀,由于這些步驟非常簡單,所以完全可以放手給學生,讓學生通過幾何畫板做“數學實驗”。在“數學實驗”的教學過程中,主要是讓學生自己做實驗,所以我們教師在備課時要考慮的主要不是講什么、怎樣講,而是如何創設符合學生認知結構的情境,如何指導學生做實驗,如何組織學生進行合作學習和交流等等。這樣,教師由課堂的主宰者轉變為學生實驗過程的指導者。
通過探索平行四邊形的性質,使學生掌握平行四邊形對邊平行且相等,對角相等,鄰角互補,對角線互相平分。
通過觀察、操作、想象、推理、交流等活動,使學生能利用相似三角形的性質解決簡單的實際問題。
二、本節課的重、難點
重點:平行四邊形的性質及簡單應用。
難點:1.平行四邊形性質的熟練應用。
2.用推理形式得出平行四邊形的性質。
三、教法與學法
1.教法分析
給學生充分的時間,使學生通過對直觀情景的觀察和自己動手操作的過程來獲取知識,并通過討論交流來深化知識的理解。
2.學法指導
本節課教學方法是“自主學習”,學生要用動手實驗、合作交流等學習方式來學習,在教學過程中展開思維,培養學生提出問題、分析問題、解決問題的能力。
四、教學過程
1.溫故知新、情境引入
(1)平行四邊形的定義,結合圖形,能說出對邊、對角、鄰角的含義。
(2)平行四邊形是不是中心對稱圖形,如果是,請找出對稱中心。
結合具體圖形(投影給出),選取3至6名中下等生,請他們分別找出兩組對邊,兩組對角,某角的兩個鄰角。
2.課件演示,探求新知
平移線段AB到A′B′,線段AB掃過的區域(陰影部分)是平行四邊形,連結AA′,BB′,得到?荀ABB′A′。
根據平移的過程,找出圖中的相等線段及位置關系。
A′B′=ABAA′=BB'AA′∥BB′
學生討論交流,得出結論:平行四邊形的對邊相等
根據對邊平行的性質,探究對角的數量關系,得出結論,并練習口述證明過程。
結論:平行四邊形的對角相等。
在兩張半透明的薄紙上分別畫出兩個如圖所示的平行四邊形ABCD,并畫出它們的對角線,設對角線的交點為O,將這兩個平行四邊形疊放在一起,使它們完全重合,再用大頭針將點O固定。把上面的平行四邊形繞點O按逆時針或順時針方向旋轉180°。
(1)上下兩個平行四邊形是否重合?
(2)由以上過程,你能指出圖中有哪幾對三角形分別是全等的嗎?
由平行四邊形的中心對稱性可以得到:
AOB≌ΔCODBOC≌ΔDOA
小組討論,口述證明過程,從而OA=OC OB=OD
于是得到:平行四邊形的對角線互相平分。
3.互動交流、總結新知
(1)平行四邊形有哪些性質?
(2)探究新知的方法。
4.例題講練、鞏固新知
5.課堂競賽、熟練新知(作答前,請畫好基本圖形;課下從中自選兩題做作業)
(1)在?荀ABCD中,∠A=30°,求∠B、∠C、∠D的度數。
(2)在?荀ABCD中,已知兩鄰角的比∠A∶∠B=5∶4,求∠C、∠D的度數。
(3)已知:O是?荀ABCD兩條對角線的交點,對角線AC=24mm,BD=38mm,一邊BC=28mm,求OAD的周長。
(4)已知平行四邊形的周長是20cm,一條對角線把它分成的兩個三角形的周長都是18cm,這條對角線長多少?
摘要:隨著現代科學技術的發展,信息技術已進入我國的教育領域,并為教育提供了更多、更優的技術支持。尤其以計算機技術為核心的多媒體技術、網絡技術的迅速發展和在學校的廣泛普及,改變著人們的教育觀、教學觀、學習觀,為學校教師的教學和學生的學習提供了良好的教學平臺,使現代學校教學在教學媒體、教學內容等方面實現了信息技術與課程的整合。本文就信息技術在初中數學課程的運用談談個人認識。
關鍵詞:信息技術 整合 多媒體 多樣性 恰當性
知識經濟的熱潮正以迅雷不及掩耳之勢向我們襲來,它以現代信息技術為依托,正悄無聲息的改變著我們現在的生產、生活、工作和學習方式,并逐漸滲透到人們的思想領域。受其影響,教育教學也正在發生著巨大的變革。這種變革的具體表現之一就是要求現代信息技術與課程教學的充分整合,實現教育教學的最優化。整合是指系統內各要素的整體協調、相互滲透,并使系統內各個要素發揮最大的效益。信息技術與初中數學教學的整合,就是將現代信息技術有機地融合在初中數學學科教學的過程中,使信息技術與小學課程結構、課程內容、課程資源以及課程實施等融為一體,成為與課程內容和課程實施高度和諧的有機部分,從而更好地完成課程目標,并提高小學生的信息獲取、分析、加工、交流、創新、利用的能力。那么,作為初中數學這樣一門基礎學科來說,如何實現這一整合,推動教育教學工作的順利開展呢?現總結如下,與大家探討:
1.信息技術與數學教學的整合的意義。數學是研究空間形式和數量關系的科學,數學能夠處理數據和信息,進行計算和推理,可以提供自然現象、科學技術和社會系統的數學模型。它是學習和研究現代科學技術的基礎:它在培養和提高思維能力方面發揮著特有的作用;它的內容、思想、方法和語言已成為現代文化的重要組成部分。將信息技術運用于數學教學彌補了傳統教學的不足,提高了教學效率,同時也培養了學生的信息技術技能和解決問題的能力。
2.信息技術與數學教學整合的策略。在這種整合模式下,教師和學生在信息技術的幫助下,分別進行教和學。首先,教師根據教學目標對教材進行分析和處理,決定用什么形式來呈現什么教學內容,并以課件或網頁的形式呈現給學生。學生接受了學習任務以后,在教師的指導下,利用教師提供的資料(或自己查找信息)進行個別化的協作式相結合的自主學習,并利用信息技術完成任務。最后,師生一起進行學習評價、反饋。在整個教學過程中,學生的主體性和個別化得到較大的體現,這樣的教學氛圍十分有利于學生創新精神和問題解決能力的培養。同樣,教師通過整合的任務,發揮了自己的主導作用,以各種形式、多種手段幫助學生學習,進一步調動了學生的學習積極性。例如,研究一次函數y:kx+b的圖像性質。傳統教學中流程是:教師給出問題一學生畫圖(參數k,b取不同值)-交流討論一歸納總結。鞏固反饋。在整個教學過程中,對函數圖像性質的理解,學生是抽象的、粗線條的。整合后,在這個活動中,學生可以親自動手進行操作,利用《幾何畫板》,探索參數改變對于圖像的影響,以及圖像變化所引起的參數的變化:教師也可以利用教學軟件演示圖像變化對解析式的影響及相反的過程。這種直觀、動態的效果對概念形成不僅省時、易懂,而且有很好的促進作用。
3.信息技術與數學教學的整合要有多樣性。媒體軟件的多樣性就注定了信息技術與數學教學整合的多樣性。我們不能只使用一種技術,也不能只提供單元的信息,應利用豐富的信息資源,為學生提供多元的信息;同時結合知識的特點選用多種多樣的數學軟件,在課堂教學中充分揭示數學的本質,幫助學生理解和學習數學;還要讓學生利用身邊的信息技術解決數學問題,從而解決 將要遇到的更多生活中的問題。以課堂教學為例,如果教學中要表現動態的軌跡問題時,可選用幾何畫板軟件或flash軟件,例如在研究解析幾何的諸多與軌跡有關的問題時,軟件的動態表現力可以充分發揮作用。另外.當遇到立體圖形的研究時,為幫助學生建立空間想象能力,更好的解決立體問題,如立體幾何中的線面關系、位置判定、數量計算等問題都可以發揮三維軟件的作用,讓我們用手筆無法表現的立體效果,可以利用信息技術加以準確展示。可以讓學生把思維拓展到空間,發揮想象力,加深對目標函數的認識和理解。當教學《統計表與統計圖》,可利用計算器和excel表格處理軟件,更快速迅捷的完成數據處理,從而進行數據分析,得到規律。信息技術的不斷發展為數學教學的變革提供了另一個舞臺,我們要利用越來越多的技術資源,幫助我們改善數學教學,在我們噠行數學教學的過程中也在不斷培養學 生的信息素養。
4.信息技術與數學教學的整合要有恰當性。用信息技術可以產生豐富的:視聽效果,以此來刺激學生的感官。可以激發他們的學罵興趣。但有些教師制作的數學課件,背景畫面復雜,幾何圖形變幻莫測,按鈕奇形怪狀,并且使用大量的動畫和音響。這些課件畫蛇添足、喧賓奪主,分散了學生的注意力,沖淡了他們對學習重點、難點的關注,久而久之,學生必然會產生厭倦情緒,反而不利于學習興趣的激發。如一位教師教學生作三角形的中線和角平分線,都采用播放動畫來示范。動畫是好,但它會削弱學生對三角形的中線和角平分線的作法的注意力,其效果可能遠不及教師在黑板上作圖示范來得好。因為教學是十分復雜、細膩的過程,教師的一個手勢.一個微笑,一句稱贊的話語等各種表示,對增強教學效果有著不容忽視的作用。課堂教學中,計算機是不能替代教師。
總之,現代信息技術和小學數學教學的整合能夠給學生、教師、學校帶來一個新的教學模式,和新的契機。適時適量的運用這一現代教育手段,把它真正融合到教學中去,發揮其最大功效,提高課堂教學效率,促進素質教育全面發展。同時也應看到,在我們農村學校,信息技術和數學教學整合是一個新興事物,還有許多問題需要我們去研究、探索。相信現代信息技術在學科教學中大有作為。
現代多媒體課件以它諸多優勢受到越來越多的教師的青睞,特別是在各種公開課中,使用多媒體課件已成為時尚,這無可厚非。但值得注意的是,在教研活動中我們發現,在使用課件的課堂上出現了“四少”:即師生之間的交流少;學生獨立思考的時間少;想象的空間少;體驗知識的過程少。
毫無疑問,這都是對多媒體課件過分依賴,或使用不當造成的。那么,在數學課堂教學中應該怎樣使用多媒體課件呢?眾說紛紜,用無定法,但我還是認為使用數學課件應該堅持以下幾個原則:
一、針對性原則。課堂上應用課件的內容應選擇難以用傳統教學手段表達清楚、學生難以通過課本和傳統教學手段理解的教學內容,以解決重點、突破難點為目標。制作課件應從具體的重點、難點人手,以小見大,追求實效,做到天上一滴水,地下一點濕。如:在學習等腰三角形“三線”合一的性質時,可利用課件分別作出等腰三角形底邊上的高、底邊上的中線和頂角的平分線,學生就能親眼看到三條線段是重合的,教師再用鼠標將三條線段一條一條地挪開,對得到的性質作進一步確認,這樣學生就能在理解的基礎上永久的記住這條性質了。
有的教師把課件做成題庫,認為這樣有利于學生練習內容全面、做題速度快,加大練習量,想通過大量的練習達到全體學生對知識的掌握。可是,通過大屏幕進行一問一答的練習,的確增加了課堂的容量,使學生一節課接觸到許多類型的題,課堂氣氛也非常熱烈,似乎學生都在積極參與,知識掌握得非常好。可是這樣做違背了針對性原則,這種練習方法使習題的轉換頻率快,有的學生對出現的題還沒有完全理解,就被會的同學答完而通過,沒有達到照顧全體學生的目的,時間長了,不僅使學生兩極分化嚴重,還會降低學生對數學課的興趣,實屬弊多而利少。
二、聯系實際原則。課件取材盡量結合學生實際,選用學生熟知的事物,這樣才能將新知識建立在學生已有知識的最近發展區,才能快速調動學生的積極性,從而得到學生較好的配合。如:學習“角”的概念時,用數碼相機拍攝出學校停車棚里學生的自行車、鉛球投擲場地的扇形區域等,并用線條標注角,畫面一出現,立馬激起學生的興趣。有的學生還情不自禁的叫起來:“那輛是我的車!”;學習“旋轉”的概念時,用身邊小朋友正在玩耍的紙風車、植物園里典型的花、香港特別行政區標志圖案和我國古代陰陽八卦圖等圖片,既可以激發學生的學習興趣,又能使學生深切感受到數學會使生活更美麗。
三、間斷性原則。畫面不能一播到底,該停的地方一定要停,必要時可進行重播、慢播。給學生留下思考的空間和時間,引導學生去思考、去想象、去欣賞、去感悟、去表達。例如:幾何圖形的旋轉、翻轉、折疊等,要讓學生清楚地觀察到變化的過程和細節,才能啟發學生進行無限的思考。
四、簡潔性原則。課件操作界面要簡潔明了,層次分明,給人以清晰有序的感受;課件設計還要規范,標識文字盡量采用常用字體,聲音的處理要融洽柔和,畫面要美觀大方,給學生優美的視聽效果。
五、整合性原則。傳統教學手段和現代教學手段各有各的優勢。選擇教學手段并不是越高級越好。一節課中,往往需要用到多種方法與手段,要注意優化組合。成功的課堂教學往往是多種教學手段與教學方法的有機整合。因此在進行多媒體輔助教學我們要樹立整合的思想,要把現代化的教學手段與傳統的教學手段(黑板、粉筆)有機結合起來使用,使各種教學手段優勢互補,而不是簡單的替代。
【關鍵詞】初中數學;課堂教學;信息技術
數學新課標明確指出:“數學課要重視現代信息技術的運用,將其作為一項輔助教學工具,徹底改變傳統的教學模式,使數學課堂變得豐富多彩.”信息技術作為一個時代的音符,其應用價值在各個領域得到體現,當然在教學方面也有無比卓越的用途.信息技術可以將圖、文、聲整合起來呈現在顯示屏上,甚至可以輕松實現3D感觀效果,所以數學中一些抽象概念被直觀化,輕松地以實體方式呈現在學生眼中,這樣學生更容易理解抽象概念,學習由難變易.這個過程中學生的興趣很容易被調動,從而使學生積極性和主動性大大提高,所以信息技術與數學學科的整合是教學改革發展的必然趨勢.本文結合多年教學經驗,對教學中信息技術的應用有一定理解,在此對初中數學信息技術教學進行了探討.
一、以信息技術為依托激發學生學習興趣
在傳統教學中,“軸對稱”概念是比較抽象的,教師只能通過口、黑板教學生這個概念,生硬又難理解,使一些學生早早失去了學習興趣.而信息技術不一樣,它可以把抽象概念直觀化,比如學習“軸對稱”時,教師自己制作一個小小的Flas就可以完美解決.筆者在教學中,制作了一個蝴蝶舞動雙翅的Flas,當學生看到這唯美畫面時都非常高興,甚至期待到底會是什么樣的問題與蝴蝶有關.這個時候就可以向學生提問:“你們在蝴蝶舞動雙翅中悟出了什么道理,是否可以從教材中找到相關的學習內容呢?”其實每一位學生都很聰明,很快就有學生大膽指出與“軸對稱”有關,蝴蝶的身體是軸,翅膀是兩個對稱的圖案.通過學習學生漸漸對軸對稱有了一定理解.為了進一步鞏固,還可以將中國古代建筑的對稱圖片展示出來,甚至現實生活中在我們的周圍,有許多對稱圖形,這些都是很好的借鑒.學生腦海中對“軸對稱”有了理解,那么學習興趣和積極性自然而然就提高了.之后還可以與學生進行交流,讓學生自己尋找對稱的事物作為課余作業.知識步步遞進,最終讓學生了解對稱點、對稱軸、對稱線等概念,并清楚相互之間的關系.
二、利用信息技術掌握數學知識
數學知識的理論性非常強,發現和驗證數學知識規律有助于提高學生數學學習能力.一般來講,數學知識規律都比較抽象,如果單純靠講是很難達到理想效果的.這個時候可以利用多媒體中的幾何畫板功能,幫助學生建立空間認知能力,發現數學知識的規律性,從而提高自主解決問題的能力.比如,在學習“等腰三角形的性質”時,可以利用幾何畫板首先畫出一個等腰三角形,顯示頂角平分線、中線等,然后拖動頂點,觀察三角形的變化,并對三個邊進行測量,注意頂點移動后邊的長度以及平分線、中線的變化,在頂點移動到何位置時,三條線會發生重合等.在這一過程中,學生會自主實驗、觀察、驗證,通過一系列的操作,對數學知識有了更深入的了解,從而完全掌握這些數學知識.
三、利用信息技術將“聽數學”轉為“做數學”
在傳統教學中,數學理論知識多是聽來的,很少有學生自己去驗證.在信息技術條件下,聽數學變成了做數學,學生自己動手做數學實驗,在實驗中觀察、分析、歸納、總結,從而建立知識體系,獲得相應的學習能力.數學教師是引導者,要積極地調動學生的自主性和創造性,讓他們在愉快的空間中學習,充分發揮和發散思維,從而得到全面發展.數學實驗可以通過計算機來完成,通過完成仿真模型,并根據數學理論對模型進行再造,從而享受“做數學”的樂趣,并在其過程中發現數學規律.比如“一次函數的圖像與性質”,函數的抽象性將許多學生拒之門外,這時利用信息技術教學軟件,就能將函數以圖像形式表現出來,并且學生可以手動拖動圖像,觀察數據的變化規律,從而思考變量之間的關系.教學不能單純依靠教師的講解和學生的記憶,動手是最好的學習方法,讓學生在動手過程中^察、推理、驗證,從而理解數學知識規律.此外,還有幾何畫板,在學到圓、切割線、圓周角時,利用幾何畫板更直觀地展示圖形,從而讓學生得到深刻的理解.教師還要鼓勵學生到展示臺上自我展示,也可以讓學生結合起來互相討論,提出問題,解決問題,然后再用幾何軟件去驗證,這樣就慢慢掌握了數學規律和現象了.
四、信息技術可以對數學教學進行更多的反饋
一、緊扣大綱,精心編制復習計劃
初中數學內容多而雜,其基礎知識和基本技能又分散覆蓋在三年的教科書中,學生往往學了新的,忘了舊的。因此,必須依據大綱規定的內容和系統化的知識要點,精心編制復習計劃。計劃的編寫必須切合學生實際。可采用基礎知識習題化的方法,根據平時教學中掌握的學生應用知識的實際,編制一份滲透主要知識點的測試題,讓學生在規定時間內獨立完成。然后按測試中出現的學生難以理解、遺忘率較高且易混易錯的內容,確定計劃的重點。復習計劃制定后,要做好復習課例題的選擇、練習題配套作業篩眩教師制定的復習計劃要交給學生,并要求學生再按自己的學習實際制定具體復習規劃,確定自己的奮進目標。
二、追本求源,系統掌握基礎知識總
復習開始的第一階段,首先必須強調學生系統掌握課本上的基礎知識和基本技能,過好課本關。對學生提出明確的要求:①對基本概念、法則、公式、定理不僅要正確敘述,而且要靈活應用;②對課本后練習題必須逐題過關;③每章后的復習題帶有綜合性,要求多數學生必須獨立完成,少數困難學生可在老師的指導下完成。
三、系統整理,提高復習效率
總復習的第二階段,要特別體現教師的主導作用。對初中數學知識加以系統整理,依據基礎知識的相互聯系及相互轉化關系,梳理歸類,分塊整理,重新組織,變為系統的條理化的知識點。例如,初三代數可分為函數的定義、正反比例函數、一次函數;一元二次方程、二次函數、二次不等式;統計初步三大部分。幾何分為4塊13線:第一塊為以解直角三角形為主體的1條線。第二塊相似形分為3條線:(1)成比例線段;(2)相似三角形的判定與性質。(3)相似多邊形的判定與性質;第三塊圓,包含7條線:(4)圓的性質;(5)直線與圓;(6)圓與圓;(7)角與圓;(8)三角形與圓;(9)四邊形與圓;(10)多邊形與圓。第四塊是作圖題,有2條線:(11)作圓及作圓的內外公切線等;(12)點的軌跡。這種歸納總結對程度差別不大、素質較好的班級可在教師的指導下師生共同去作,即由學生“畫龍”,教師“點睛”。中等及其以下班級由教師歸類,對比講解,分塊練習與綜合練習交叉進行,使學生真正掌握初中數學教材內容。
四、集中練習,爭取最佳效果
梳理分塊,把握教材內容之后,即開始第三階段的綜合復習。這個階段,除了重視課本中的重點章節之外,主要以反復練習為主,充分發揮學生的主體作用。通常以章節綜合習題和系統知識為骨干的綜合練習題為主,適當加大模擬題的份量。對教師來說,這時主要任務是精選習題,精心批改學生完成的練習題,及時講評,從中查漏補缺,鞏固復習成效,達到自我完善的目的。精選綜合練習題要注意兩個問題:第一,選擇的習題要有目的性、典型性和規律性。如,函數的取值范圍可選擇如下一組例題:
(2)y=13-2x
(3)y=3x+2x-1
(4)y=1x+1-1
關鍵詞:多媒體 初中數學 效率
中圖分類號:G632 文獻標識碼:A 文章編號:1674-2117(2014)06-0191-01
視頻、圖片、聲音、動畫是多媒體應用的主體,將其有機地組合,應用到初中數學教學之中,可以起到有效的輔助教學的作用。利用多媒體教學,在利用不同的圖像、不同顏色線條表現圖形的同時,可以有效地提升教學的效率。
1 多媒體教學可以提高教學的時間效率
在教學中,我們經常會出現這樣一種現象,一堂課45分鐘,30分鐘的知識講解,15分鐘課堂練習,在30分鐘的課堂練習中,有10分鐘的時間,教師在黑板上書寫題目,20分鐘的時間在講解。如果教師想在課堂上做一些拓展,知識點撥,那就需要壓縮一些講課的時間,從時間上來看,這樣的時間分配不能夠達到兩全其美的目的。那么如何才能夠給教師留下更多時間,讓教師去發揮,與學生共同剖析題目,讓學生獲得更多的知識。筆者認為,可以利用多媒體,尤其是對于數學科目,應該有效地利用多媒體進行學科講解,以此來節約教師在黑板上抄寫題目的時間。在中學教學中,應用PPT,可以有效提升課堂教學效率。
利用PPT進行初中數學知識的講解,其實與傳統的備課方式一樣,主要是將所講題目,利用計算機編寫到幻燈片上,在講解的過程中,通過播放幻燈片進行講解。
利用PPT進行幾何知識的教學,特別是幾何中的證明題,效果更為明顯。比如證明題:“角平分線上的點,到兩條邊的距離相等”。如果采用傳統的教學方法:①教師在黑板上出題,3分鐘左右;②給學生10分鐘的時間自己證明;③教師引領,在黑板上證明,7分鐘左右,并進行總結;④讓學生慢慢體會,再出另外一道題,3分鐘左右。
如果采用多媒體進行教學,首先在制作課件時,在多媒體課件上寫好此題的整個解答過程,并進行隱藏。開始講課時:①教師在PPT顯示題目,1分鐘左右;②要求學生自己解答,13分鐘左右;③教師引領,利用PPT,顯示答案,3分鐘左右;④顯示另外一道題,1分鐘左右。
通過對二者的教學過程進行比較來看,傳統的教學過程總共用了23分鐘,而利用多媒體進行教學,僅用了18分鐘,效率是顯而易見的。并且教師在整個過程中,給學生留出了更多的時間,讓學生進行思考,讓學生自己去證明,努力發揮出學生的主動性,給予了學生獨立思考的空間,而縮短了教師直接給出答案的時間,教學效果更為明顯。
2 多媒體教學可以提高教學質量效率
在函數的知識點講解過程中,利用PPT進行知識講解,效果比較明顯。在講解函數的時候,函數圖像的描繪以及圖像的性質,如圖像的對稱性,與坐標軸焦點的個數,開口的方向,是否有最大值、最小值,都可以用PPT繪制出來。繪制的圖像比較直觀而且效率較高。因為我們知道,如果在黑板上進行講解,只是畫圖、描點都會用到一節課的時間。更不用說多幅圖的比較。而且利用PPT進行繪圖還有個好處,就是繪制的圖像數據可以保存,可以進行多次應用。這對教學來說,都是可以提升教學效率的。
在某些特殊的題型中,在初始階段,應用動畫進行教學,效果會更好。這類題型主要體現在運動變化之中。我們可以看看如下一道題:點p是線段l:y=3x+7上的一動點,x的取值范圍為[0,5],點Q是二次函數y=x2+5上一點,Q的y坐標的值在[5,9],現在求PQ距離的取值范圍。
在這道題中,P、Q都是動點,如果直接用代數的方法去解的話不是很明了,邏輯比較復雜,所以最好的方法是圖像法,但是涉及動點,對于學生而言題目不是很直觀,但是這類題目經常出現,為了培養學生的對這類題目的解答能力,筆者認為,可以用PPT動畫將這個過程表現出來,將學生引入門,讓學生對它有直觀的認識,解題效果會更為明顯,有助于學生的理解能力。
3 小結
從前文的論述可知,利用多媒體教學,可以提升教學的時間效率,更是因為多媒體圖像的豐富性,以及圖片展示多彩性,利用圖片或者動畫,更容易給予學生直觀的認識,可以有效地提升教學質量效率。但是筆者認為,并不是所有的知識點都能夠利用多媒體進行教學,要考慮到教師的準備、課件的復用性、播放過程的邏輯性。多媒體只是教學的一個工具,其具體內涵還是表現在教師所準備的教案之上,這是教學質量的根本之所在。
(山東省棗莊市第三十一中學,山東 棗莊 277211)
參考文獻:
[1]錢月健.初中數學多媒體教學的誤區及應對策略建議[J].中國信息技術教育,2010,(18).
一、利用多媒體教學,激發學生學習興趣。
傳統的幾何教學中,只憑教師口頭的說教和黑板上呆板的板書,很難體現出情境創設中的懸疑性、驚詫性和疑慮效果,也就是說不可能產生強烈的轟動效果和視覺反差,不能給學生留下深刻的印象,從而引起學生的注意。而利用多媒體信息技術就能很好地解決這個問題,多媒體具有特殊的聲、光、色、形,通過圖像的翻滾、閃爍、定格、色彩變化及聲響效果等給學生以新異的刺激感受,可以使創設的情境更生動逼真、接近生活,使原本抽象的幾何概念,更貼近實際,更能體現幾何概念的實用性,有利于問題的解決。
例如:在教學初中幾何第二冊“軸對稱圖形”這一課時,就可以應用多媒體的鮮艷色彩、優美圖案,直觀形象地再現事物,給學生以如見其物的感受。教師可以用多媒體設計出多幅圖案:如:等腰三角形、飛機、幾幅古建筑圖片等,一一顯示后,用紅線顯現出對稱軸,讓學生觀察。圖像顯示模擬逼真,渲染氣氛,創造意境,使學生很快掌握了軸對稱圖形的特點,有助于提高學習興趣,激發求知欲,調動學生積極性。
例如:在講授《中位線定理》時,可以通過平移、旋轉、對稱,在暗示中講解中位線定理,由于圖形的閃爍、旋轉,學生幾乎體察不到教師的提示,不自覺地增強了學好幾何的自信心。又如:在講授“邊角邊公理”時,課件設計了翻畫片找全等三角形的游戲。在增強學生判斷能力的同時,也提高了學生學習幾何的興趣。
二、利用多媒體輔助教學,化靜為動,感知知識的形成過程。
傳統的幾何教學中教具運用,并不能使抽象的幾何概念真正地形象化、具體化,而多媒體技術可以使幾何概念真正“活”起來。
比如用《幾何畫板》講解《直線與圓的位置關系》可以使直線轉動,產生與已知圓的相離、相切、相交的各種動態位置關系,并在旁邊顯示圓的半徑(r),并動態顯示圓心到直線的距離(d),學生可以一目了然地動態地了解到直線與圓的位置關系,與圓的半徑(r)與圓心到直線的距離(d)的數量關系,使學生在觀察實驗的同時,推出圓的位置關系與圓的半徑(r)與圓心到直線的距離(d)之間的關系:
相離?圳
相切?圳r=d;
相交?圳r>d。
只要一提起直線和圓的位置關系,學生就會想到旋轉的圖像。類似這樣的課件還有“線段的垂直平分線的性質”、“平行四邊形的判定”、“圓與圓的位置關系”等。
三、運用多媒體,巧破重、難點。
多媒體輔助教學最大的特點是有助于突出教學重點,分散難點。準備好教學課件,只要點擊鼠標,就可以進行大量演示。在課堂教學中無論老師是多么善于表達、比劃,也難以表現出一些抽象和具有共性的知識內容,而這些知識內容往往是一節課的重點和難點。由于多媒體教學形象具體、動靜結合,聲色具備等特點,便可以輕松解決上述問題,達到突出重點、突破難點的目的。例如在直線這部分內容中,對稱是個重要概念,通過Sketchboard的動畫功能,形象地表達點對稱,軸對稱的圖像,讓學生既能理解對稱的特征,又能找到對稱的圖像或點間的關系,歸納并列出對稱的運算式,還可通過對課件的觀察,把光線的反射問題,最短距離問題歸結為對稱問題,使學生掌握這一類問題的解法,并了解對稱在圖形中的價值。
例如:在教學《角的認識》這一課時,教學生如何畫角是一個重要內容。老師用傳統的教學方法在黑板上畫給學生看,存在一定的弊端。如學生走神,教師畫時部分學生不注意看;教師作圖時,身體遮住部分學生的視線等。而運用多媒體輔助教學,情形就大不一樣了。我們可以先用多媒體演示畫角的步驟和基本方法,由于用多媒體演示,手段新穎,學生注意力集中,給學生留下深刻的印象。演示結束后,教師再在黑板上示范畫角,最后讓學生獨立畫角。這樣的教學過程設計,符合學生的心理需求,使學生對畫角方法清楚明了,教學效果好。
四、運用多媒體,增加課堂容量,師生互動頻繁。